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Abstract

Hydrodynamic journal bearings under large perturbations go beyond the serviceable range of the linear
theory and thus should be treated as nonlinear systems. Three kinds of nonlinear oil-film force models (24-
co., 28-co. and 36-co. models) are proposed to denote the oil-film forces by retaining certain terms of Taylor
series expansion of the oil-film force. A least-mean squares method in time domain is proposed to identify
the oil-film coefficients. The study shows that these three nonlinear models are feasible to describe the oil-
film forces and reliable linear oil-film coefficients can be identified from these models.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Hydrodynamic bearings are generally featured by a set of linear stiffness and damping
coefficients in the conventional rotor dynamic models. Theoretically, these coefficients are only
valid for small amplitude motion with respect to the equilibrium position. Lund’s infinitesimal
perturbation method [1] and finite perturbation method are often used to calculate the oil-film
coefficients. Qiu and Tieu [2] proved that these two methods predict almost the same results when
the perturbation amplitudes are less than 0:02c (displacement) or 0:02oc (velocity) for normal
bearing eccentricities; these two results differ by 2.5% if the perturbation amplitude reaches 0:5c
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

c radial clearance, mm

d1 linear damping coefficient matrix

dx; _x; dx; _y; dy; _x; dy; _y linear damping coefficients,
N sm�1

DX ; _X ;DX ; _Y ;DY ; _X ;DY ; _Y dimensionless linear
damping coefficients,
Di;j ¼

di;j
mL

c
R

� �3
; ði ¼ X or Y Þ

d2 second-order damping coefficient ma-
trix

d2 second-order damping coefficient,
N s2 m�2

D2 dimensionless second-order damping
coefficient, d2=D2 ¼ ð1=oCÞmLðR=CÞ

3

d3 third-order damping coefficient matrix

d3 third-order damping coefficient, N s3m�3

D3 dimensionless third-order damping
coefficient, d3=D3 ¼ ð1=ocÞ2mLðR=cÞ3

h2 second-order hybrid coefficient matrix

h2 second-order hybrid coefficient, N sm�2

H2 dimensionless second-order hybrid
coefficient, h2=H2 ¼ ð1=CmLðR=CÞ

3

f X ; f Y horizontal and vertical hydrodynamic
oil-film forces, N

F ¼
fc2

mUL
dimensionless force

~Fi measured dimensionless dynamic oil-
film force (for i ¼ X or Y)

DFi identified dimensionless dynamic oil-
film force (for i ¼ X or Y)

f x0; f y0 static oil-film forces in the horizontal
and vertical direction, N

FY load parameter, f Y0=FY ¼ mUL=c2

k1 linear stiffness coefficient matrix

kx;x; kx;y; ky;x; ky;y linear stiffness coefficients,
N/m

KX ;X ;KX ;Y ;KY ;X ;KY ;Y dimensionless linear
stiffness coefficients,
Ki;j ¼

ki;j
moL

c
R

� �3
; ði; j ¼ X ;Y Þ

k2 second-order stiffness coefficient matrix

k2 second-order stiffness coefficient, N=m2

K2 dimensionless second-order stiffness
coefficient, k2=K2 ¼ ð1=CÞmoLðR=CÞ

3

k3 third-order stiffness coefficient matrix

k3 third-order stiffness coefficient, N=m3

K3 dimensionless third-order stiffness
coefficient, k3=K3 ¼ ð1=CÞ

2moLðR=CÞ
3

L bearing length, mm

m mass of bearing housing (including
bottom and top splint, four steel robs),
Kg

M effective size of data

n journal’s rotating speed, rpm

R journal radius, mm

U tangential surface velocity of the jour-
nal, m s�1

x; y displacements in the horizontal and
vertical direction, mm

X ;Y dimensionless displacements in the hor-
izontal and vertical direction, x=X ¼ c

m kinetic viscosity, Pa s

o rotational frequency of the shaft,
rad s�1

d dimensionless excitation amplitude

ð�Þ d/dt; derivative with respect to time

Subscripts

X direction of X

Y direction of Y
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(displacement) or 0:04oc (velocity). Hattori [3] analyzed the variations of oil-film stiffness and
damping coefficients of a short bearing subjected to large dynamic loads. He concluded that most
of the bearing coefficients vary by more than an order of magnitude and the oil-film nonlinearity
significantly influences the rotor motion. Muller-Karger and Granados [4] proposed a nonlinear
model, in which all terms up to the third-order are retained. Muller-Karger and Barrett [5] studied
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the influence of oil-film nonlinearity on the measured dynamic coefficients. They found that the
oil-film nonlinearity produced an uncertainty in the coefficients of up to 20 percent compared to
the linearized coefficients obtained from a small perturbation solution of the Reynolds equation.
Chu and Wood [6] proposed a nonlinear dynamic model taking the higher-order terms into
account. In their model, the nonlinearity in the oil-film forces was represented by a set of
nonlinear stiffness and damping coefficients, which are functions of static bearing displacement.
Choy et al. [7,8] determined the nonlinear stiffness coefficients of the third-, fifth- and seventh-
orders at various locations with respect to the equilibrium position. The nonlinearity of the
bearing was evaluated by the deviation between the exact stiffness coefficients and the linear
coefficients. They concluded that the oil-film nonlinearity is significant and the oil-film forces can
be accurately modeled using higher-order stiffness and damping coefficients for displacements far
away from the equilibrium position.

Accordingly, nonlinear oil-film forces are much more complicated than linear forces. The study
on nonlinear oil-film forces is still rare and most papers are confined to theoretical analyses. The
purpose of this paper is to derive some new nonlinear oil-film force models and to identify these
dynamic coefficients based on the experimental data.
2. Nonlinear oil-film force models

Linear oil-film coefficients with respect to an equilibrium position of the journal are inaccurate
when the bearing system vibrates with large amplitudes due to a dynamic load. In this case, the
high-order terms of the Taylor series expansion of oil-film forces should be retained. Bearing oil-
film forces will become nonlinear functions of the journal’s displacement and velocity. Using the
second-order Taylor series expansion, bearing oil-film forces can be written as

f i ¼ f i0 þ
1

1!
x
q
qx

þ y
q
qy

þ _x
q
q _x

þ _y
q
q _y

� �
f iðx0; y0; 0; 0Þ

þ
1

2!
x
q
qx

þ y
q
qy

þ _x
q
q _x

þ _y
q
q _y

� �2

f iðx0; y0; 0; 0Þ; ði ¼ x or yÞ ð1Þ

where ðx0; y0; 0; 0Þ represents the static equilibrium position of the journal, x and y are the
journal’s relative movement coordinates in the X and Y directions.

It can be seen that the oil-film forces have 14 dynamic coefficients in the horizontal ðX Þ and
vertical ðY Þ direction, respectively. These coefficients include the linear stiffness and damping
coefficients, the second-order stiffness and damping coefficients, and the second-order hybrid
coefficients. They are involved in the following matrices:

k1 ¼
kx;x kx;y

ky;x ky;y

" #
¼

qf x
qx

���
ðx0;y0;0;0Þ

qf x
qy

���
ðx0;y0;0;0Þ

qf y

qx

���
ðx0;y0;0;0Þ

qf y

qy

���
ðx0;y0;0;0Þ

2
664

3
775,
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d1 ¼
dx; _x dx; _y

dy; _x dy; _y

" #
¼

qf x
q _x

���
ðx0;y0;0;0Þ

qf x
q _y

���
ðx0;y0;0;0Þ

qf y

q _x

���
ðx0;y0;0;0Þ

qf y

q _y

���
ðx0;y0;0;0Þ

2
664

3
775,

k2 ¼
kx;x2 kx;y2 kx;xy

ky;x2 ky;y2 ky;xy

" #
¼

1
2
q2f x

qx2

���
x0;y0;0;0ð Þ

1
2
q2f x

qy2

���
x0;y0;0;0ð Þ

q2f x
qxqy

���
x0;y0;0;0ð Þ

1
2

q2f y

qx2

����
x0;y0;0;0ð Þ

1
2

q2f y

qy2

����
x0;y0;0;0ð Þ

q2f y

qxqy

����
x0;y0;0;0ð Þ

2
6664

3
7775,

d2 ¼
dx; _x2 dx; _y2 dx; _x _y

dy; _x2 dy; _y2 dx; _x _y

" #
¼

1
2
q2f x

q _x2

���
ðx0;y0;0;0Þ

1
2
q2f x

q _y2

���
ðx0;y0;0;0Þ

q2f x
q _xq _y

���
ðx0;y0;0;0Þ

1
2

q2f y

q _x2

����
ðx0;y0;0;0Þ

1
2

q2f y

q _y2

����
ðx0;y0;0;0Þ

q2f y

q _xq _y

����
ðx0;y0;0;0Þ

2
6664

3
7775,

h2 ¼
hx;x _x hx;x _y hx;y _x hx;y _y

hy;x _x hy;x _y hy;y _x hy;y _y

" #
¼

q2f x
qxq _x

���
ðx0;y0;0;0Þ

q2f x
qxq _y

���
ðx0;y0;0;0Þ

q2f x
qyq _x

���
ðx0;y0;0;0Þ

q2f x
qyq _y

���
ðx0;y0;0;0Þ

q2f y

qxq _x

����
ðx0;y0;0;0Þ

q2f y

qxq _y

����
ðx0;y0;0;0Þ

q2f y

qyq _x

����
ðx0;y0;0;0Þ

q2f y

qyq _y

����
ðx0;y0;0;0Þ

2
6664

3
7775,

where k1 and d1 are the linear stiffness and damping coefficient matrices; k2 and d2 are the second-
order stiffness and damping coefficient matrices; h2 is the second-order hybrid coefficient matrix.

Combining Eq. (1) and the aforementioned matrices, the dynamic oil-film forces can be
modeled as

Df x

Df y

" #
¼ k1

x

y

" #
þ d1

_x

_y

" #
þ k2

x2

y2

xy

2
64

3
75þ d2

_x2

_y2

_x _y

2
64

3
75þ h2

x _x

x _y

y _x

y _y

2
66664

3
77775. (2)

As shown in Eq. (2), the nonlinear oil-film force model is much more complicated than the
linear oil-film force model due to more coefficients involved. For example, the nonlinear model
will have 28, 68 and 138 oil-film coefficients if the Taylor series expansion is retained to the
second-, third- and fourth-order terms, respectively. In fact, the model can be conveniently
represented by some of these nonlinear terms. The order of the expression can be adjusted
through the truncation error depending on the practical application. In this paper, there are seven
kinds of oil-film coefficients to be considered. They are (1) the linear stiffness coefficient k; (2) the
linear damping coefficient d; (3) the second-order stiffness coefficient k2; (4) the second-order
damping coefficient d2; (5) the second-order hybrid coefficient h2; (6) the third-order stiffness
coefficient k3; and (7) the third-order damping coefficient d3: Three models, which retain different
oil-film coefficients, are studied in the following sections.
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2.1. 28-coefficient oil-film force model (28-co. model)

When all terms in the second-order Taylor series expansion are retained, the nonlinear oil-film
force model has 28 coefficients in all. Using dimensionless coefficients Ki;j (for i ¼ X or Y ; and
j ¼ 1214), the (dimensionless) dynamic oil-film force can be simplified as

DFi ¼ Ki;1 � X þ Ki;2 � Y þ Ki;3 � _X þ Ki;4 � _Y þ Ki;5 � X 2 þ Ki;6 � XY þ Ki;7 � X _X þ Ki;8 � X _Y

þ Ki;9 � Y 2 þ Ki;10 � Y _X þ Ki;11 � Y _Y þ Ki;12 � _X
2
þ Ki;13 � _X _Y þ Ki;14 � _Y

2
, ð3Þ

where Ki;1 and Ki;2 are linear stiffness coefficients; Ki;3 and Ki;4 are linear damping coefficients;
Ki;5;Ki;6 and Ki;9 are second-order stiffness coefficients; Ki;12;Ki;13 and Ki;14 are second-order
damping coefficients; Ki;7;Ki;8;Ki;10 and Ki;11 are second-order hybrid coefficients.
2.2. 24-coefficient oil-film force model (24-co. model)

When the third-order Taylor series expansion only retains terms associated with direct stiffness
and damping coefficients, the nonlinear oil-film force model has 24 coefficients in all. Then, the
dynamic oil-film force can be described as ði ¼ X or Y Þ

DFi ¼ Ki;1 � X þ Ki;2 � Y þ Ki;3 � _X þ Ki;4 � _Y þ Ki;5 � X 2 þ Ki;6 � Y 2 þ Ki;7 � _X
2
þ Ki;8 � _Y

2

þ Ki;9 � X 3 þ Ki;10 � Y 3 þ Ki;11 � _X
3
þ Ki;12 � _Y

3
, ð4Þ

where Ki;1 and Ki;2 are linear stiffness coefficients; Ki;3 and Ki;4 are linear damping coefficients;
Ki;5 and Ki;6 are second-order stiffness coefficients; Ki;7 and Ki;8 are second-order damping
coefficients; Ki;9 and Ki;10 are third-order stiffness coefficients; and Ki;11 and Ki;12 are third-order
damping coefficients.
2.3. 36-coefficient oil-film force model (36-co. model)

When the Taylor series expansion retains all terms up to the second-order and the terms
associated with third-order direct stiffness and damping coefficients, the nonlinear oil-film
force model has 36 coefficients in all. Accordingly, the dynamic oil-film forces can be written as
(i ¼ X or Y )

DFi ¼ Ki;1 � X þ Ki;2 � Y þ Ki;3 � _X þ Ki;4 � _Y þ Ki;5 � X 2 þ Ki;6 � XY þ Ki;7 � X _X

þ Ki;8 � X _Y þ Ki;9 � Y 2 þ Ki;10 � Y _X þ Ki;11 � Y _Y þ Ki;12 � _X
2
þ Ki;13 � _X _Y

þ Ki;14 � _Y
2
þ Ki;15 � X 3 þ Ki;16 � Y 3 þ Ki;17 � _X

3
þ Ki;18 � _Y

3
, ð5Þ

where coefficients Ki;1–Ki;14 have the same meanings as those in Eq. (3), Ki;15 and Ki;16 are third-
order stiffness coefficients, Ki;17 and Ki;18 are third-order damping coefficients.
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3. Identification of oil-film dynamic coefficients

Using the multi-frequency identification method [9] to the experimental data obtained from a
test rig (its details have been presented in Ref. [9]), a set of discrete values in time domain about
X ðkÞ;Y ðkÞ; _X ðkÞ; _Y ðkÞ; ~FX ðkÞ and ~FY ðkÞðk ¼ 12MÞ can be achieved. The oil-film dynamic
coefficients can be identified using the least-mean-square method.

The least mean square between the measured dynamic oil-film force ~FiðkÞ and the identified
force DFiðkÞ (modeled by Eqs. (3)–(5)) can be calculated as follows (i ¼ X or Y ; and j ¼ 1212; 14
or 18)

min
ðKi;j Þ

�2i ¼
XM

k¼1

½ ~FiðkÞ � DFiðkÞ�
2. (6)

Then the following equation can be deduced (for 28-co. model):

q�2i
qKi;p

¼ 0 ðp ¼ 1214; i ¼ X ;Y Þ. (7)

Substituting Eq. (3) into Eq. (7) yields

PM
k¼1

X ðkÞ2
PM
k¼1

X ðkÞY ðkÞ � � �
PM
k¼1

X ðkÞ _X ðkÞ _Y ðkÞ
PM
k¼1

X ðkÞ _Y ðkÞ2

PM
k¼1

Y ðkÞX ðkÞ
PM
k¼1

Y ðkÞ2 � � �
PM
k¼1

Y ðkÞ _X ðkÞ _Y ðkÞ
PM
k¼1

Y ðkÞ _Y ðkÞ2

..

. ..
. . .

. ..
. ..

.

PM
k¼1

_X ðkÞ _Y ðkÞX ðkÞ
PM
k¼1

_X ðkÞ _Y ðkÞY ðkÞ � � �
PM
k¼1

_X ðkÞ2 _Y ðkÞ2
PM
k¼1

_X ðkÞ _Y ðkÞ3

PM
k¼1

_Y ðkÞ2X ðkÞ
PM
k¼1

_Y ðkÞ2Y ðkÞ � � �
PM
k¼1

_Y ðkÞ3 _X ðkÞ
PM
k¼1

_Y ðkÞ4

2
66666666666666666664

3
77777777777777777775

14	14

X

¼

PM
k¼1

X ðkÞ ~FiðkÞ

PM
k¼1

Y ðkÞ ~FiðkÞ

..

.

PM
k¼1

_X ðkÞ _Y ðkÞ ~FiðkÞ

PM
k¼1

_Y ðkÞ2 ~FiðkÞ

2
66666666666666666664

3
77777777777777777775

14	1

, ð8Þ
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where X ¼ ½Ki1;Ki2;Ki3;Ki4;Ki5;Ki6;Ki7;Ki8;Ki9;Ki;10;Ki;11;Ki;12;Ki;13;Ki;14�
T: Fig. 1 plots the

measured and identified dynamic oil-film forces according to a set of experimental data. It can
be seen that the identified dynamic oil-film forces match the measured data very well. The
difference between the identified force DFiðkÞ and the measured force ~FiðkÞ can be evaluated by
the coefficient of determination (COD), which is defined as follows:

COD ¼ 1 �

P
ð ~FðkÞ � DF ðkÞÞ2P
ð ~F ðkÞ � F̄ Þ

2
, (9)

where F̄ is the mean value of ~F ðkÞ: The COD is a well-known indicator to evaluate the
difference between the proposed model and its corresponding experimental data. Note that
the value of COD is between 0 and 1 with 1 indicating the perfect matching. Calculations
show that COD values for the nonlinear oil-film force model are 0.9979 in the X direction
and 0.9977 in the Y direction. Therefore, the nonlinear model is feasible to describe the oil-film
forces.

Eq. (8) is used to identify the 28-co. model. Likewise, the 24-co. model and the 36-co. model can
also be identified when proper equations are employed.
Fig. 1. Measured and identified dynamic oil-film forces in the X and Y directions. Measured oil-film forces ~Fi: —;

identified oil-film forces DFi: . . . .
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For the 24-co. model,

PM
k¼1

X ðkÞ2
PM
k¼1

X ðkÞY ðkÞ � � �
PM
k¼1

X ðkÞ _X ðkÞ3
PM
k¼1

X ðkÞ _Y ðkÞ3

PM
k¼1

Y ðkÞX ðkÞ
PM
k¼1

Y ðkÞ2 � � �
PM
k¼1

Y ðkÞ _X ðkÞ3
PM
k¼1

Y ðkÞ _Y ðkÞ3

..

. ..
. . .

. ..
. ..

.

PM
k¼1

_X ðkÞ3X ðkÞ
PM
k¼1

_X ðkÞ3Y ðkÞ � � �
PM
k¼1

_X ðkÞ6
PM
k¼1

_X ðkÞ3Y ðkÞ3

PM
k¼1

_Y ðkÞ3X ðkÞ
PM
k¼1

_Y ðkÞ3Y ðkÞ � � �
PM
k¼1

_Y ðkÞ3 _X ðkÞ3
PM
k¼1

_Y ðkÞ6

2
66666666666666666664

3
77777777777777777775

12	12

X

¼

PM
k¼1

X ðkÞ ~FiðkÞ

PM
k¼1

Y ðkÞ ~FiðkÞ

..

.

PM
k¼1

_X ðkÞ3 ~FiðkÞ

PM
k¼1

_Y ðkÞ3 ~FiðkÞ

2
66666666666666666664

3
77777777777777777775

12	1

. ð10Þ

For the 36-co. model,

PM
k¼1

X ðkÞ2
PM
k¼1

X ðkÞY ðkÞ � � �
PM
k¼1

X ðkÞ _X ðkÞ3
PM
k¼1

X ðkÞ _Y ðkÞ3

PM
k¼1

Y ðkÞX ðkÞ
PM
k¼1

Y ðkÞ2 � � �
PM
k¼1

Y ðkÞ _X ðkÞ3
PM
k¼1

Y ðkÞ _Y ðkÞ3

..

. ..
. . .

. ..
. ..

.

PM
k¼1

_X ðkÞ3X ðkÞ
PM
k¼1

_X ðkÞ3Y ðkÞ � � �
PM
k¼1

_X ðkÞ6
PM
k¼1

_X ðkÞ3 _Y ðkÞ3

PM
k¼1

_Y ðkÞ3X ðkÞ
PM
k¼1

_Y ðkÞ3Y ðkÞ � � �
PM
k¼1

_Y ðkÞ3 _X ðkÞ3
PM
k¼1

_Y ðkÞ6

2
66666666666666666664

3
77777777777777777775

18	18

X
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¼

PM
k¼1

X ðkÞ ~FiðkÞ

PM
k¼1

Y ðkÞ ~FiðkÞ

..

.

PM
k¼1

_X ðkÞ3 ~FiðkÞ

PM
k¼1

_Y ðkÞ3 ~FiðkÞ

2
66666666666666666664

3
77777777777777777775

18	1

. ð11Þ
4. Results and discussion

4.1. Comparisons between the linear oil-film force model and nonlinear models

Based on a set of experimental data, four sets of oil-film coefficients, which are associated
with the linear and nonlinear oil-film force models, can be identified. Tables 1 and 2 list all the
oil-film coefficients in the X and Y directions. The experiment was conducted when
n ¼ 1250 rpm;FY ¼ 0:6396; and the maximum excitation amplitude 0:025c ðd ¼ 0:025Þ:

As shown in Tables 1 and 2, the identified linear coefficients using these three nonlinear
models are similar to each other. However, they are quite different from those obtained from
the linear model. The identified nonlinear coefficients using these three nonlinear models
are different to some extent. Some of the coefficients are similar to each other, while others
exhibit great disagreements. Fig. 2 shows the measured dynamic oil-film forces and the identified
forces. Here, the 28-co. model and the linear model have been used, respectively. It indicates
that the 28-co. model is in good agreement with the experimental data, while the linear model
has some discrepancies. Further investigation shows that the 24-co. model and 36-co.
model well coincide with the experimental data (each of CODs in the X an Y directions for
these nonlinear models are larger than 0.99), thus they are also suitable to describe the dynamic
oil-film forces.

When n ¼ 1250 rpm and FY ¼ 0:6396; multi-sets of experimental data with various
excitation amplitudes have been achieved. Based on these sets of experimental data, the
linear oil-film force model and nonlinear oil-film force models can be identified. Fig. 3 presents
the COD values for the linear model and the 28-co. model with respect to the
excitation amplitude. It indicates that the COD values for the nonlinear oil-film force
model are close to 1 in both of the X and Y direction. It can also be observed that the
COD values for the linear model decrease when the excitation amplitude increases. Therefore,
the linear oil-film force model becomes invalid when the amplitude excitation increases.
Nevertheless, the nonlinear oil-film force model still works well with large excitation
amplitudes.
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Table 1

Dynamic coefficients in the X direction, FY ¼ 0:6396; n ¼ 1250 rpm; d ¼ 0:025

Model KX ;X KX ;Y DX ; _X DX ; _Y KX ;X2 KX ;XY HX ;X _X HX ;X _Y KX ;Y2 HX ;Y _X HX ;Y _Y D
X ; _X

2 DX ; _X _Y D
X ; _Y

2 KX ;X3 KX ;Y3 D
X ; _X

3 D
X ; _Y

3

LMa 0.6802 �0.6669 1.3580 0.6017 — — — — — — — — — — — — — —

24-Co. 0.8908 �0.0277 0.5462 0.6526 �1.3043 — — — �0.7488 — — 0.8144 — 0.4862 �28.665 20.821 2.3306 �10.129

28-Co. 0.8517 �0.0455 0.5462 0.6048 �4.1484 0.6218 �6.0160 �20.810 �2.2998 5.7881 1.8901 �5.0836 �17.790 �25.620 — — — —

36-Co. 0.8507 �0.0470 0.5466 0.6048 �3.5177 0.7977 �5.6454 �19.158 �2.6745 6.4787 2.5727 �5.3012 �17.707 �24.691 1.0794 4.4230 6.1598 �24.089

aLM—linear model.

Table 2

Dynamic coefficients in the Y direction, FY ¼ 0:6396; n ¼ 1250 rpm; d ¼ 0:025

Model KY ;X KY ;Y DY ; _X DY ; _Y KY ;X2 KY ;XY HY ;X _X HY ;X _Y KY ;Y2 HY ;Y _X HY ;Y _Y D
Y ; _X

2 DY ; _X _Y D
Y ; _Y

2 KY ;X3 KY ;Y3 D
Y ; _X

3 D
Y ; _Y

3

LMa 2.7026 0.9194 1.0664 5.5903 — — — — — — — — — — — — — —

24-Co. 1.4035 1.6953 0.2217 1.5282 1.8437 — — — 1.5957 — — 1.5263 — 5.4077 �10.887 �22.165 �4.5632 113.16

28-Co. 1.5969 1.7290 0.2716 1.7965 35.092 5.8955 46.9025 137.197 5.6048 �12.250 12.377 26.710 92.125 137.62 — — — —

36-Co. 1.6017 1.7340 0.2698 1.7995 32.294 6.2588 44.1045 129.205 6.8232 �14.117 11.649 26.893 89.270 132.32 99.456 �133.79 4.4646 6.1972

aLM—linear model.
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Fig. 2. Measured and identified dynamic oil-film forces in the X and Y directions ðFY ¼ 0:6396; n ¼ 1250 rpm; d ¼

0:15Þ: Measured: —; linear model: ...; nonlinear model (28-co. model): 
:

Fig. 3. CODs vs. dimensionless excitation amplitude d ðFY ¼ 0:6396; n ¼ 1250 rpmÞ:

S.X. Zhao et al. / Journal of Sound and Vibration 287 (2005) 827–843 837
4.2. Comparisons between the identified oil-film coefficients

In this section, the identified coefficients obtained from different oil-film force models will be
compared and the influence of excitation amplitude on the identified coefficients will be further
discussed. Figs. 4 and 5 plot the variations of identified linear stiffness and damping coefficients
with respect to excitation amplitude. The experiments were conducted when FY ¼ 0:7750 and
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Fig. 4. Identified linear stiffness coefficients vs. dimensionless excitation amplitude d ðFY ¼ 0:7750; n ¼ 1250 rpmÞ:
Linear model: �; 24-co. model: �; 28-co. model: +; 36-co. model: n:

Fig. 5. Identified linear damping coefficients vs. dimensionless excitation amplitude d ðFY ¼ 0:7750; n ¼ 1250 rpmÞ:
Linear model: �; 24-co. model: �; 28-co. model: +; 36-co. model: n:

S.X. Zhao et al. / Journal of Sound and Vibration 287 (2005) 827–843838
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n ¼ 1250 rpm. It shows that the identified linear stiffness and damping coefficients obtained from
these nonlinear models are consistent and close to each other when the excitation amplitude is less
than 0:06c: However, the identified linear stiffness and damping coefficients obtained from the
linear model are sensitive to the excitation amplitude. Only when the excitation amplitude is small
enough (dp0:025), the linear model can receive the similar results with these nonlinear models.

Nonlinear stiffness and damping coefficients obtained from these nonlinear models are
illustrated in Figs. 6–9. For the sake of simplicity, only a part of nonlinear coefficients (i.e., the
second-order stiffness coefficients KX ;X2 and KX ;Y2 ; the second-order damping coefficients D

X ; _X
2

and D
X ; _Y

2 ; the third-order stiffness coefficients KX ;X3 ;KX ;Y3 ;KY ;X3 and KY ;Y3 ; and the third-
order damping coefficients D

X ; _X
3 ;D

X ; _Y
3 ;D

Y ; _X
3 and D

Y ; _Y
3) are presented. It should be noted that

these four figures correspond to different operational conditions. For Figs. 6 and 7, FY ¼ 0:7750
and n ¼ 1250 rpm; and for Figs. 8 and 9, FY ¼ 0:6396 and n ¼ 1250 rpm.

It can be seen from Figs. 6 and 7 that the 24-co. model can receive stable second-order oil-film
coefficients, while the other two nonlinear models cannot receive stable results. It should be noted
that the identified nonlinear coefficients from 24-co. model in Fig. 6 are close to those in Fig. 7.
The reason for this phenomenon is that the load parameters corresponding to these two figures
are approximate (Fig. 6: FY ¼ 0:7750; Fig. 7: FY ¼ 0:6396).

Figs. 8 and 9 depict the identified third-order stiffness and damping coefficients, which are
received from two nonlinear models (24-co. model and 36-co. model). It can be found that the
identified third-order oil-film coefficients are not consistent and change with the excitation
amplitude. What is more from Figs. 8 and 9, the identified third-order oil-film coefficients will
Fig. 6. Identified second-order stiffness and damping coefficients vs. dimensionless excitation amplitude d ðFY ¼

0:7750; n ¼ 1250 rpmÞ: 24-co. model: �; 28-co. model: +; 36-co. model: n:
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Fig. 7. Identified second-order stiffness and damping coefficients vs. dimensionless excitation amplituded d ðFY ¼

0:6396; n ¼ 1250 rpmÞ: 24-co. model: �; 28-co. model: +; 36-co. model: n:

Fig. 8. Identified third-order stiffness coefficients vs. dimensionless excitation amplitude d ðFY ¼ 0:6396; n ¼

1250 rpmÞ: 24-co. model: �; 36-co. model: n:

S.X. Zhao et al. / Journal of Sound and Vibration 287 (2005) 827–843840
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Fig. 9. Identified third-order damping coefficients vs. dimensionless excitation amplitude d ðFY ¼ 0:6396; n ¼

1250 rpmÞ: 24-co. model: �; 36-co. model: n:

S.X. Zhao et al. / Journal of Sound and Vibration 287 (2005) 827–843 841
remain constant when the excitation amplitude is large enough. So the stable third-order oil-film
coefficients may be obtained from these two nonlinear models as long as the excitation amplitude
is large enough.

In general, reliable linear oil-film coefficients can be received from these three nonlinear models,
while stable nonlinear coefficients cannot be obtained from these nonlinear models except for
some second-order oil-film coefficients, which can be received from the 24-co. model. The
following are some reasons for these phenomena.

The reason why it is difficult to receive stable nonlinear coefficients is that Eqs. (8), (10) and (11)
are ill-conditioned system of equations. But it is strange that reliable linear coefficients can still be
received from these nonlinear models. These phenomena may be a result of the coefficient
matrices of Eqs. (8), (10) and (11).

These coefficient matrices are diagonal-dominant and positive definite Hermitian matrices. The
diagonal elements in these coefficient matrices compose an approximate descending sequence, and
besides, they play a dominant role in identifying oil-film coefficients. Taking the 36-co. model for
example (the coefficient matrix is 18 	 18), the diagonal element sequence according to a set of
experimental data (FY ¼ 0:6396; n ¼ 1250 rpm; d ¼ 0:025) is following:

f86; 38; 6:4; 3:5; 6:6; 2; 0:35; 0:19; 1:3; 0:18; 0:08; 0:05; 0:03; 0:02; 0:57; 0:053; 0:0004; 0:0002g:

It can be seen that the latter diagonal elements of the coefficients matrix are very small, while the
former diagonal elements are rather large. Because the latter diagonal elements have greater effect
on the nonlinear coefficients than on the linear coefficients, the identified nonlinear coefficients are
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more sensitive to the testing errors. That is why reliable nonlinear coefficients cannot be obtained
from 36-co. model in the case of ordinary excitation amplitude. Meanwhile, since the former
diagonal elements are large, stable linear coefficients can be received. This is a typical case in
identifying the oil-film coefficients. Similar results can be achieved from 24-co. model and 28-co.
model.

When the excitation amplitude is large enough, the latter diagonal elements of the coefficients
matrix will become larger, stable nonlinear coefficients can be received from nonlinear models
(Figs. 8 and 9).

Moreover, Eq. (10) (corresponding to 24-co. model, the coefficient matrix is 12 	 12) has the
smallest condition number among these three equations. This is the reason why it is 24-co. model
rather than the other two models that can receive much more stable second-order oil-film
coefficients in the case of ordinary excitation amplitude.
5. Conclusions

The results presented here support the following general conclusions:
1.
 Only when the excitation amplitude is small, the oil-film forces of journal bearing can be
assumed as linear one; when the excitation amplitude is large, the oil-film forces are nonlinear.
Three nonlinear models (24-co., 28-co. and 36-co. models) are feasible to describe the oil-film
forces.
2.
 When the excitation amplitude is large, the identified linear oil-film coefficients from these three
nonlinear models are consistent and close to each other. Reliable linear oil-film coefficients can
be obtained through these three nonlinear models.
3.
 It is difficult to obtain reliable nonlinear oil-film coefficients. The 24-co. model can receive
much more reliable second-order oil-film coefficients compared with the other two nonlinear
models. However, the other nonlinear coefficients cannot be reliably obtained from these
nonlinear models unless the excitation amplitude is large enough.
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